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The problem of classifying topologically distinct general relativistic metrics is 
discussed. For a wide class of paraUelizable space-time manifolds it is shown 
that a certain integer-valued topological invariant n always exists, and that 
quantization when n is odd will lead to spinor wave functionals. 

1. I N T R O D U C T I O N  

The possibility of  field theories allowing configurat ions that are topo-  
logically distinct and  that cannot  be cont inuously  deformed into the 
vacuum field is an  idea that  has found  application in a number  of  areas of  
physics. A field configurat ion represents a mapping  f rom the domain  X of 
the field variables into the range Y, where we shall assume Y to be a 
connec ted  manifold.  There is usually a restriction that the only mappings  
considered are those that  map some fixed base point  (or points) x 0 E X into 
a fixed base point  yo E Y. In  s tudying such field theories it is thus 
impor tan t  to be able to list the topologically distinct classes of  base-point-  
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preserving mappings r X---~ Y. The set of all such classes, called homotopy 
classes, is denoted by [X,  Y]. The determination of [X, Y] for a given X 
and Y is the well-known classification problem of homotopy theory. 

For  many field theories of physical interest X is three-dimensional 
Euclidean space R 3, with the infinite boundary of R 3 mapping into Y0. 
Under these circumstances, R 3 can be replaced by its one-point compacti- 
fication, the 3-sphere, S 3. In studying different field theories of this type 
one is therefore interested in calculating [X, Y] for different examples of Y, 
with X--  S 3. 

One of the earliest field theories to be studied from the point of view 
of homotopy theory was general relativity. Here the classification problem 
is turned around. Y, as we shall explain, is fixed and one is interested in 
computing [X, Y] for different examples of the space-time manifold X. 
Finkelstein and Misner (1959) analyzed the case in which the space-time 
manifold is chosen to be R 3 X R 1 (or  equivalently S 3 x R 1). They found 
that the homotopy classes of metric could be specified by a single integer 
label, n. For this special case Williams and Zvengrowski (1977) have 
shown that the n = 1 configurations correspond to fermions and that spinor 
wave functionals can be defined. 

The present paper discusses the classification problem for a general 
parallelizable space-time manifold and the mechanism by which half-odd- 
integer spin can arise. For  any space-time manifold that is a bundle space 
whose fiber is R 1 and whose base is any closed (i.e., compact and 
boundaryless), connected, orientable 3-manifold it is shown in Section 4 
that the homotopy classes of Lorentz metrics can be put in one-to-one 
correspondence with a group that is a direct sum of the group of integers Z 
and a (possibly zero) number of groups of integers modulo 2, Z2; i.e. 
metrics are topologically classified according to Z @ Z 2 . . .  ~ Z 2. For  such 
space-time manifolds it is shown in Section 5 that spinor wave functionals 
can be defined on suitable classes of metrics labeled by odd n E Z. Sections 
4 and 5 are arranged so that the main results are stated at the beginning. 
These are then followed by proofs of a more technical nature. Some 
interesting examples of space-time manifolds are discussed in Section 6. 

Before treating the general relativistic case, it will be advantageous to 
review the simpler situation of field theories whose domain is S 3. This is 
done in the following section. 

2. K I N K S  W I T H  D O M A I N  S a 

Consider a field theory described in terms of mappings 

cp : R 3----~ y 
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with 

~(x)--->y0 as Ixl--->~ 

The boundary conditions at infinity allow R 3 to be replaced by S 3, so that 
the classification problem is solved by computing IS 3, Y], which is the 
third homotopy group ~r3(Y). This is Abelian for all Y. The group identity, 
denoted by 0 (or by Q0), is the class of mappings containing the constant 
map ~0 which maps the whole of R 3 into Y0- If the group identity is not the 
only element of 7r3(Y), then the theory is said to admit Idnks (Finkelstein, 
1966). 

If Y is a vector space, then 7r3(Y) = 0 and there are no kinks. For a tess 
trivial example, consider Skyrme's theory of strong interactions (Skyrme, 
1971; Williams, 1970; Pak and Tze, 1979) in which Y = S  3. The 
theory admits kinks since '2T3(S3).~_,Z. The homotopy classes of mappings 
can be labeled by a single integer and we may denote them by 
. . . .  Q - 2 , Q - p Q o ,  QI,Q2 . . . . .  If n is positive, mappings belonging to Q~ are 
called n-kink mappings and mappings belonging to Q_n are called n-anti- 
kink mappings. The elements Q1 and Q_ 1 are generators of ~r3(S 3) and the 
group operation works according to Q~ + Qm = Q,+m. A simple example of 
a 1-kink mapping r 3-->S 3 is provided by ~l(x)= (~l, ~2, ~3, q~4) with 

q~i=2axi/(r2+ a2), i= 1,2,3 

d?4 = (r E - aE)l(r  2 + a 2) 

where r=lx[ and ava0 is a constant. This is the usual stereographic 
projection. The homotopy class of a mapping is denoted by square 
brackets. Thus [~01] = Qr 

The 1-kink mappings of Skyrme's theory are degree-1 mappings. It is 
possible to define the degree of mapping between any two orientable 
manifolds of the same dimension. If r  n, then degq9 is, roughly 
speaking, the number of times that r wraps X n around Y". More precisely, 
because the integral singular nth homology groups of any orientable 
n-manifolds satisfy Hn(X~)~Hn(  Y ~ ) ~ Z ,  any mapping ~0: Xn---> Y~ induces 
a homomorphism (Spanier, 1966, p. 207), 

,~,: H o ( X ~ ) . H ~ ( r  TM ) 

The homomorphism corresponds to multiplication by some integer, and 
degrp is defined to equal this integer (up to a sign). 

Consider a theory for which Y= p3, real projective 3-space (i.e., S 3 
with antipodal points identified). Since ~3(P3)~-_~Z, there are kinks. Let 
x:S3--->P 3 be the usual double covering map which identifies antipodal 
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points of S 3. Then [x] generates 'n'3(P 3) and so r is a 1-kink map (or a 
1-antikink map, depending on the convention chosen). However, degr = 2. 
There are no mappings cp: S3---~P 3 of odd degree. The question of kink 
number is thus more closely related to homotopy O.e., generating [X, Y]) 
than to homology (i.e., degree of mapping). It should also be pointed out 
that the above examples are simple in the sense that they admit only one 
kind of kink. A more complicated theory could be obtained by choosing 
Y= SO(4), for example. Since SO(4) = S 3 • p3, it follows that 7r3(SO(4))~ 
Z ~ Z so that there are two different types of kink. 

An important feature of many kink theories is the possibility that the 
kinks are (classical analogs of) fermions. This happens when the double 
connectedness of the three-dimensional rotation group S0(3) implies a 
corresponding double connectedness in a particular homotopy class Qw. 
(We use w to denote any system of labels, not just a single integer). It is 
then possible to define wave functionals ~: Qw--->C which are double 
valued under the action of the rotation group. (C denotes the set of 
complex numbers.) We shall continue to talk of "double-valued function- 
als" although strictly speaking we should be considering single-valued 
functionals defined on the universal covering space of Qw- 

Consider SO(3). Since "trl(SO(3))~Z2, there will be two different types 
of loop in SO(3). The generator of ~'1(SO(3)) contains the loops that are 
nontrivial in the sense that they are not deformable to a point. The 2~r 
rotation loops are of this type. Let I 1 denote the unit interval [0, 1]. A 
simple example of a 2~r rotation loop in SO(3) is given by A:II---~SO(3) 
with A(t)= R t, where 

cos27rt sin2~rt ! ]  
Rt-~ -sin2~rt cos2~rt , 0<t~< 1 

0 0 

Since all 2~r rotation loops in SO(3) are homotopic to each other, it will be 
sufficient to consider this one example. Let r be a mapping 
belonging to Qw. Then R t can be used to define a 2~r rotation loop p ir~ Qw 
according to p: 11---~Qw with p(t)(x)= tp(Rtx ). Either all 2~r rotation loops in 
Q~ will be nontrivial or none of them will. If 2~r rotation loops in Qw are 
nontrivial, then it will be possible to define wave functionals xIt(cp) that are 
double valued and that change sign under 2~r rotations. After Finkelstein 
and Rubinstein (1968) we make the following definition. 

Definition. If, for a particular theory, the 2~r rotation loops in a 
homotopy class Qw are nontrivial, then Q~ (and the theory) is said to admit 
half-odd-integer spin. 
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Skyrme's theory has been shown to admit half-odd-integer spin (Williams 
and Zvengrowski, 1977). Theories with Y= SU(3) do not admit half-odd- 
integer spin (Dowker, 1972). 

3. GENERAL RELATIVISTIC KINKS 

Let 6"31L4 denote the four-dimensional space-time manifold of general 
relativity. As previously mentioned we consider only parallelizable 62q~4 in 
which case the tangent bundle T(sy~4), its dual T*(62%4), and any bundle 
associated with these is trivial. In particular the bundle of Lorentz metric 
tensors  TEL(6"~ 4) is trivial, where  TEL(C~ 4) is defined as follows (see also 
Steenrod, 1951, w Take $4,1 to be the space of all real symmetric 
nonsingular 4 • 4 matrices of signature 2, that is all matrices congruent to 
diag (1, l, l , -  1). The group GL(4,R) acts on $4,1 by congruence T--->oTzo, 
where z E $4,1 and a E GL(4, R). Then TEL(a)IL 4) is the bundle associated to 
T*(6.)]'~ 4) with the given action of GL(4,R) and with fiber $4, r Locally, at 
each point p E G)]L4, by choosing a basis (f~} for the tangent space Tp at p 
and letting {0 r } be the corresponding dual basis for T~*, any element 
g E TEL(P ), the fiber over p, has a representation 

g--  g O | 

where [[g~[[~S4,1. We denote the projection map of the bundle by 
1"I" T2L(6"~4)-'->6~ 4. 

By a cross-section one means a map C: 91L4-~TEL(91L 4) such that 
II  :C=  I~ , ,  the identity map of ~ 4 .  Since the bundle is trivial a cross 
section always exists. One calls a cross section C a Lorentz metric tensor 
field on G~4, and it is these that we are interested in classifying (up to 
homotopy). 

1I 
For  any trivial bundle F--~X--~ B, that is any bundle equivalent to the 

product bundle F ~  B x F-~ B where i(x)=(bo, x),Tr(b,x)=b, the cross 
sections of II are clearly in one-to-one correspondence with the set of 
continuous mappings B--->F. Two cross sections C, C': B--~X are said to be 
homotopic if there is a homotopy Ct: B--~X with Co= C, C l = C', and each 
C t a cross section, 0 < t < 1. A lemma due to Barcus (1954) states that the 
requirement that each C t be a cross section, 0 < t  < 1, may be dropped. We 
introduce the notation [[B,X~ for the set of homotopy classes of cross 
sections. For a trivial bundle the bijection between cross sections and maps 
B-~F passes to a bijection [[B,X~[B,F] ,  and it is this bijection that we 
will use. For a recent account of the use of fiber bundles in kink theories 
see Clarke (1979). 
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Remark. The bijection II B,X  II ~[B ,  F] is not unique, but depends only 
1"I 

on the explicit trivialization X ~  B • F of the bundle F--,X--) B. 

Definition 3.1. A space-time manifold 6~4 is said to admit kinks if 
and only if [~6?AL 4, T2L(~4)]] contains at least two distinct elements. 

From the above considerations we have 

~6~4 T2L(G~4)]] ~_~ [ 6"~4, 84, 1 ] 

Now consider $4, r This space has the same homotopy type as M4,1=P 3 
(Steenrod, 1951, w Hence 

~ 4 ,  T2L (6"~4)]] ~ [ 6~4, p 3] 

Since p a= SO(3) (Steenrod, 1951, w is a topological group, [91~ 4, e3] is 
also a group (Spanier, 1966, p. 34). Thus 6~4 admits kinks if and only if 
[6~4,p3] is not the trivial group. 

A simple example is provided by 6"J~4=S2xRI• with no 
boundary conditions on either R 1. Since R 1 is contractible, 

[ $2• R ' X  R ' ,P31~[  S2, p 3 ] ~Tr2(P 3) ~.~0 

Thus all metrics belong to the same homotopy class. A more interesting 
choice for 6~4 would clearly give a less trivial answer for [6"~4,p3]. 

Consider the example 63]L 4 = S 3 • R 1. 

Hence there is one type of kink with counting number n ~ Z. This agrees 
with the results of Finkelstein and Misner (1959). The usual double 
covering x: S3---)P 3 gives rise to a 1-kink "metric. The corresponding map 
g: S3x  R 1---~$4,1 is given by 

g~.(~, t) = 8~. -  2 ~ ,  ~t,v= 1,2,3,4 

where 8.. is the Kronecker delta, t E R i and ~ = (4h, 02, q~3, q~4) E S 3 so that 
y.q)2= 1. Metrics of this type have been studied by Williams and Zia 
(1973), and Finkelstein and McCollum (1975). Note that the metric is 
actually given by 

= Z 
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where the O's come from some explicit framing (i.e., an explicit trivializa- 
tion of the tangent bundle of 631L 4= $3•  R 1), which in turn defines the 
bijection [~glL 4, T2L(63iL4)~ ~ [ ~ 4 ,  $4 ' l]- 

To better understand the relationship between $41 and p3 we shall 
give the explicit definition of the retraction 9r: $4,1~P 3 (Steenrod, 1951, 
w176 In fact ~r is a bundle map with contractible fiber equal to the 
product of the space of 3 • 3 positive definite matrices and the space of 
1 • 1 negative definite matrices. 

Let ,r E $4,1- Then z~-r is positive definite so that t~ = (z~-r)1/2 exists, a 
also positive definite (and hence unique). One may then construct o = ~'a - 1 
and it can be shown (Steenrod, 1951, w that o ~ S4,1A 0(4). It follows 
from standard matrix theory of quadratic forms that one may find a 
(nonunique) p EO(4) such t h a t  o'~pTOlp, where 01= diag(1,1,1, -1 ) .  
Although p is not unique, its bottom row will be unique up to + sign. 
Denote the bottom row of p by 04 (P4 ~ $3) and let square brackets [ ] 
denote the identification of antipodal points. The projection ~r is then 
defined by 

'27"('/') = [~4] ~ p 3  

For the example of g,, given above, it is easy to show that II g~ll = 
o rtrlO, where 

13= 

~4 --~3 ~2 --~1 1 
~3 ~4 --~1 --~2 ] ~ 0 ( 4 )  

--~2 ~1 ~4 --~3 

~1 ~2 ~3 ~4 

and so ~r(I ] g~[D = [q~l,dP2,qb3,q54]. Thus if we define a map y:  53--~S4,1 by 

T(q'l, ~2, ~3, q'4)= I 1 ~ -  2%~,[I 

it follows that ~ry = x: S3--~P 3. 
Now consider the problem of spin. In defining half-odd-integer spin in 

the general relativistic case, we cannot use R t to rotate the whole of the 
manifold s)lL4, as was done with R 3. Instead we consider any point p E 631L 4 
and the tangent space Tp at that point. Let the frame (f , )  at p be a basis 
for Tp. A new basis can be obtained from the original one by f[, - L ~ f f  
where the matrix L belongs to the proper orthochronous Lorentz group 
E§ It is known that rq(E§ the double connectedness being due to 
the SO(3) subgroup of E+*. If 11 denotes the one-dimensional unit matrix 
then the direct sum R t ~ 11 represents a nontrivial 2~r rotation loop in E+t. 
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Acting with L on (f~} corresponds to acting with L -I  on {0r), which in 
turn corresponds to acting on II g~,ll according to 11 g~,ll~t TII g~,l[L. 

Lorentz metric tensor fields are classified homotopically by 
[[6"~4, T2L(6~4)~ ~[6~4 ,  84 ' 1],~__~[6~4 ' p3]. Let Qw E ~6~4, T2L(6~4)~ be any 
homotopy class. Denote the corresponding class in [9iL4,$4,1] by Q S, and 
the corresponding class in [6-~4,p3] by Qw e. Consider a mapping y: ~4___~ 
$4,1 and let y E Qw s. A simple example of what we shall mean by a 2~r 
rotation path in Qw s is given by p:I1---~Q s with 

o(t)(p) = (R, �9 �9 I 0  

where p E 6"~4 and t E I ~. 

Definition 3.2. If the 2~r rotation loops in Qw s are nontrivial, then Qw s 
(and also Qw) is said to admit half-odd-integer spin. 

Since p3 is homeomorphic to SO(3) we can define a 2~r rotation loop 
in Qw e by allowing R t to act directly on P 3 by the usual group operation. It 
turns out (see Section 5) that this path corresponds directly to the 2~r 
rotation loop in QS under the projection ~r: $4,1--~P 3. Thus the 2~r rotation 
loops in Qw, QS, and Qf are either all trivial or all nontrivial. For  
analyzing problems of spin we can use Qw, QS, and Q f  interchangeably, 
and we shall often omit the superscripts S and P and refer simply to Qw. 

For proving certain theorems in general relativity it is sometimes 
assumed that there is a fibration of 63764 by a system of time-lines 
(Lichnerowicz, 1968, p. 110). Assuming that there are no closed timelike 
curves, this means that 6~4 would be a vector bundle space whose fiber is 
R ~ and whose base is a 3-manifold M. For such a fibration it is standard 
that M (identified as the zero-section of the bundle) is a strong deforma- 
tion retract of r 4. It follows that [gL 4, Y]~[M, Y] for any space Y. A 
particularly simple example of an r 4 of the above type would be any 
space-time manifold of the form M • R 1. We shall always assume M to be 
closed, connected, and orientable. 

This paper takes the point of view that a general relativistic kink can 
serve as a model for an elementary particle. Thus the structure M o of 
interest should be localized within a 2-sphere S (Figure 1 illustrates the 
situation in one tess dimension). At S space is Euclidean and in terms of 
mappings into p3 all points on S are mapped into the group identity. The 
classification problem is then equivalent to considering maps of the 
quotient space M = Mo/S. Note that M is a closed, connected manifold. 

Before proceeding further it is useful to first-mention some conven- 
tions concerning notation and base points that will be used henceforth. As 
base point of $4,1 we take o 1 = diag(1, 1, 1, - 1). As base point of any of the 
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~.. ~ J S  

Fig. 1, 2-sphere bounding homotopically nontrivial region, 

various Lie groups that occur we take the identity element. For example 
regarding S 3 as the unit quaternions, the base point of S 3 is I =  1 +Oi+Oj 
+Ok. We regard p3 as S 3 with antipodal points identified, and write 
[x] ~ P 3 for the equivalence class containing x, - x. It is also convenient to 
use column vectors for points of S 3 and P 3. In this notation a + bi + cj + dk 
=col(b,c,d,a)ES 3 and [a+bi+cj+dk]=col[b,c,d,a]EP 3. Note  that 
col(0,0,0, 1) and coil0,0,0, 1] are the respective base points. As mentioned 
in Section 1, only base-point-preserving maps are considered. 

4. C L A S S I F I C A T I O N  OF RELATIVISTIC KINKS 

Throughout Sections 4 and 5 we shall assume that the space-time 
manifold 6~4 is a bundle space whose fiber is R 1 and whose base is a 
closed, connected, orientable 3-manifold M. Since [G'J~4,p3]~[M, P3], it 
follows that the set of homotopy equivalence classes of metrics will be 
isomorphic to [M, p3]. 

We first show that [M, S3],.~.Z. The situation for [ M , P  3] is more 
complicated, although one knows at least that this is a group (cf. Section 
3). In Theorem 4.3 we show that [M, p3] is Abelian. The main result of this 
section follows f rom Theorem 4.3 and is summarized by Theorem 4.6, 
which asserts that 

where Z2 t denotes Z 2 ~ . . -  ~ Z  2 (l copies). The value of l is determined 
from H 1(M; Z2). Since the latter is a finite-dimensional vector space over 
Z 2, we have H l(M; Zz),~Z ~ for some k >/0. Then either l =  k or l =  k -  1. 
When l =  k, we will call M a type 2 manifold, and when l =  k - 1, M will be 
called type 1. Theorem 4.4 shows that M is type 1 if and only if M admits 
a degree-1 map into p3, and this theorem also gives methods to determine 
whether a given 3-manifold is type 1 or type 2. For  the rest of this section 
some familiarity with various techniques of homotopy  theory (cf. Mosher 
and Tangora,  1968) is assumed. We shall use ~ to denote inclusion, ~ to 
denote monic (one-to-one), and +-~ to denote epic (onto). 



10 Shastri, Williams, and Zvengrowski 

To classify maps of any connected CW complex X, dirnX < 4, into S 3, 
a 2-stage Postnikov system for S 3 is used: 

K( Z 2, 4)~-~X4 

Sq 2 

K(Z, 3) ~ K(Z2,5 ) 

The space X 4 is defined by the Postnikov system construction, and Sq 2 is 
the Steenrod squaring operation. Under these assumptions [X, S3]~ 
[X, X4]. 

Proposition 4.1. [M, S 3 ] ~ Z  for any closed, connected, orientable 3- 
manifold M. 

Proof. Immediate from the fiber mapping sequence: 

[M,K(Z2,4)]--  , [M, X 4 ] - -  . [M,K(Z,3)] , [M,K(Z2,5)] 

H4(M; Z2) ~,~ 0 [M, S 3] H3(M; Z ) ~  Z HS(M; Zz)~O 

Remark. This result can be proved using simpler tools such as the 
Hopf classification theorem, but  it is convenient to introduce X 4 here since 
it will be needed later in Section 5. 

As before let x :  S3---~P 3 be the standard double covering identifying 
antipodal points. Let P oo = p i U p2 tA �9 �9 �9 and let / t :  p3c__~p oo be the inclu- 
sion. Since x is a homomorphism of topological groups, the mapping x#, 
where 

x.:[x, s3] [x,e 3] 

is also a group homomorphism. When X is simply connected x# is an 
isomorphism (Hu, 1959, p. 97) and [X, Pa]~Z.  However, X = S  3 is the 
only known example of a simply connected closed 3-manifold. In general, 
[X, P 3] is somewhat more complicated as we see in the following result. 

Proposition 4.2. For any pathwise connected space X there is a short 
exact sequence of groups 

X, S31 ~# tL#  [x,P 3] 
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Proof Consider the commutative diagram of fibrations 

Z 2 ~ Z 2 ~ ~K(Z2, 1) 

S 3 c S ~176 ~ PK(Z2, 1) 

p3 C I~ poo ,~ K(Z2, 1) 

where PY, ~2 Y are, respectively, the path space and loop space of a space Y 
with base point Yo- We may therefore regard x as the induced fibration of 
the standard path fibration over P 0% The fiber mapping sequence together 
with [X, Zz]~O now gives exactness. 

It must still be shown that/z# is a homomorphism. (Note that/~ is not 
a group homomorphism; indeed P oo is an H-space but not a topological 
group). Suppose f,g: X---->P 3, and let m: p3 X p3__._>p3 be the multiplication 
on p3. Then [f]-[ g] is represented by the composition h---m o ( f •  g)o A: 

SLg X---->X• p 3 x p  3 ~m p3 

Letting ~ generate H~(P"; Z2)~Z2,  n >_-2, it follows by definition of I~# 
that ##[h]=  h*(0. But/ t#[h]  =/~#([f]-[g]),  and 

h*(O=A*( f •  

= A * ( f f  | 1 7 4  I +  I |  

= ~*(Y*~| / + / |  

=f*~+g*~ 

Hence ## is a homomorphism. �9 

Corollary. For any connected CW complex X with d imX < 3 there 
is an exact sequence of groups 

X 'S3]  x# - t~, . ' ,  [ x,e  l - -  H1(x; z2) 

Proof t~# is now necessarily onto by the cellular approximation 
theorem (Mosher and Tangora, 1968, p. 129) since e3=(poo)(3). (We use 
X (3) to denote the 3-skeleton of a cellular space X, i.e., the subspace 
formed by all cells of dimension less than or equal to 3.) �9 
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Theorem 4.3. For any closed orientable 3-manifold M there is a 
short exact sequence E of Abelian groups 

0 z, [ M, e 3] Ir z2)- 0 

Proof. Using the above corollary and Proposition 4.1 gives all the 
stated conclusions except that the commutativity of G--[M,P 3] must still 
be demonstrated. The following proof of this fact simplifies the authors" 
original proof and was suggested by Prof. P. Hilton. 

Let  p3 0 $3 be the pinch map. The composi t ion  Z = [ M ,  
x# P# 

S 3] ~ [M,P  3] ~ [M,S 3] = Z  is then multiplied by 2. Let a = x#(1), which 
generates Ker /~#. Take any b , c~[M,P  3] and let d=bcb- lc  - l .  Since 
H I(M; Z2) is Abel ian/~#(d)= 0, so d---a m for some m. Since Z is Abelian 
p # ( d ) = 0 .  Thus O=p~(am)=p#x#(m)=2m,  and m = 0 , d =  1,bc=cb. �9 

Remark. Only the commutativity of H I(M; Z2) was used in this proof. 

A short exact sequence such as 

O-->A ----> B--> C-->O 

is said to split if it is isomorphic by the obvious commutative diagram to 
the short exact sequence 

t 
O-->A ---> A ~ C---> C--->O 

where t(a)= (a, 0) and ~r(a, c )=  c. The exact sequence E of Theorem 4.3 
may or may not split. For  example, it is know that [P3,Pa]~Z (Milgram 
and Zvengrowski, 1974, Lemma 2.1) so in this case E does not split. 
Clearly, [M, p3]~,Z(~Z~ when E splits. When E does not split, it is not 
hard to see (using Theorem 4.4 below or otherwise) that E is isomorphic to 
the direct sum of the simpler sequences: 

~1: O-'-> Z ~-~ Z--> Z2--)O 

k ~ 2 :  0--~0---~ Z 2  k - 1 __.> Z 2  - l___> 0 

whence [M, p3]~ZI~Z k-1. Letting l = k  or k - 1  as necessary, it follows 
that any map cp:M--*P 3 has a kink-type (n;q . . . . .  tt) where n@Z, ti@Z 2, 
i = 1,2 . . . . .  l. Note that under different choices of generators for [M, P 3] the 
t i may change but n is unique (up to a sign). We shall call n the kink 
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number of the map ~ (and refer to ~0 as an n-kink map). Let us say that M 
is of type 1 if E does not split and type 2 if E splits. The next theorem 
gives criteria to determine the type of M. 

Theorem 4.4. The following statements are equivalent: 
(i) M is of type 1. 

(ii) x#(J) is divisible by 2 in [M, p3]. 
(iii) M admits a degree-1 map into p3 (hence the term "type 

1"). 
(iv) There is an element ~EHI(M;Z2) such that 0:/ :~3~ 

H3( M; Z2). 

Proof. (i)r is obvious, since type 1 means that E does not split, 
which is clearly equivalent to x# ( J )  being divisible by 2 in [M,P  3] since 
Coker r#  is a finite direct sum of Z2's. 

(ii)~(iii). Let the generator J ~[M,S 3] be represented by a degree-1 
map g. Then xg~--h where [h]E[M,P 3] is divisible by 2. (The symbol 
denotes "homotopic to"). This means h~_mo(f• as in the proof of 
Proposition 4.2, for some f: M--->P 3. Now 

2 = deg x. degg --- deg(xg) = degh = deg f+  degf  

Hence deg f=  1. 
(iii)=~(ii). Let f:M--~p3,degf= 1, and take h=mo( f •  as above. 

Since r  Z2, 

O= h,: %( M)--->cr,( P 3) 

Hence there is a mapping g: M-.--~S 3 such that ~g= h. As above one readily 
finds degg=  1, hence [g] generates [M,S 3] and x # ( J ) = _  x#[g ]=  __+[Kog] 
= _ [hi = ___ 2[f] is divisible by 2. 

(iii)~(iv). Let , /generate H1(P3,Z2). Then ~/3~0. Any degree-1 map 
f : M ~ P  3 will have f*:H3(P3;Z2)--~H3(M;Z2) an isomorphism. (f* is 
"'multiplication by 1"). Taking ~=f*(~) gives ~3=f f (~3)~0 .  

(iv)=,(iii). Let ~EH1(M; Z2), ~3~0,  and write q for the generator of 
H~(P~;Z2). Since poo is a K(Z2,1), it follows that there is a map 
g: M---~P ~ with g*(q)=~. By the cellular approximation theorem g"~if for 
some map f: M----~P 3, where i: p3c_~p ~ is the inclusion. Since i* (q ) - , / ,  one 
has f*(,/)=~. Hence f*(~3)=~3v~0, which means that f is a map of odd 
degree, say degree 2 k +  1. Finally, let fl:M--~P 3 have degree 2k (obtain- 
able by a composition of x with any degree k map M ~  S 3). Then any map 
representing [ f ] - [ f~ ]  will have degree 1. This completes the proof of the 
theorem. �9 
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In many cases the following corollary is useful. 

Corollary 4.5. If M has type 1 then Z 2 is a direct summand of 
HI(M).  

Proof. By the above theorem there is a map f:  M--->P 3 of degree 1. But 
then f.:HI(M)--->HI(P3)~_~Z2 is a split epimorphism (Siebenmann, 1969, 
w and hence Z 2 is a direct summand of HI(M ). �9 

The main results so far can be summarized in the following theorem. 

Theorem 4.6. (a) M has type 1 if and only if there exists ~E 
H1(M; Z2) such that ~3~0.  Otherwise M has type 2. (lo) Letting 
H I(M; Z 2 ) ~ Z  ~ one has 

where 

[M, e31 z z ' 

k - 1  if M has type l 
I=  k if M has type 2 

Remark. It would be interesting to see whether the type- l - type-2  
dichotomy has a corresponding physical significance. 

5. S P I N  

In Section 3 the 2r rotation loop p of a map T: G~4--')$4,1 was defined 
by 

p( t)(p) = ( e,  ~ ll) r'f(p)( R t �9 I,) 

where rE[0,  1], p E ~ 4 .  Under  the fiber map 7r: S 4 I-->M4 1 = P  3= SO(3) 
(Steenrod, 1951, w this induces a loop ~ in [6"~41SO(3)]. According to 
Steenrod (1951, w and an observation concluding w this induced 
loop is given by 

X( t)(p) = Rt.~r'/(p ) 

In other words the conjugation action by orthogonal matrices in $4,1 
corresponds to the left multiplication action in M4,1= S0(3), under the 
fibration ~r. Again following Section 3, we may replace e~4 in our 
computation by a closed, connected, orientable 3-manifold M. 

Just as the kinks were classified by [M, p3], we shall see below that the 
27r rotation loops are classified as elements of [ ~ M , P  3] where E M  is the 
(reduced) suspension of M. The definition of suspension can be found in 
the book by Spanier (1966, p. 41). In Theorem 5.2 we compute this group. 
The main result on spin is proved in Theorem 5.5, which asserts that for 
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suitable maps  cp: M--)P 3 of kink number  _+ 1 (or 2m + 1) the corresponding 
2~r rotat ion loop X represents a nonzero  element in [Y.M,P 3] of order  2. 
The exact nature of this element depends on whether  M has type 1 or type 2. 

In accordance  with the above  observations we first make a definition. 

Definition 5.1. Let qo:M--+P 3= SO(3), and denote its componen t  in 
the space (M, p3). of based maps  by Q~ (or Qw, if w is the kink type of q0). 
Then  2% is defined to be the 2~r rotat ion loop in Qw given by  

x~(t)(x) = Rc~0(x) 
where t E[0, 1], x C M .  

Remark. In the special case cp = x: S3--+P 3, the loop ) t  is precisely that  
studied by  Williams and  Zvengrowski  (1977), and is k n o w n  to to be non-  
trivial of order 2. 

Suppose now that q~ ~ Qw, as above. Let Qo be the componen t  of 
(M, p 3 ) .  containing the constant  map  %. Using cp we can define a 
" t ranslat ion" homeomorph i sm ~: Qw-->Qo, by  

~(~)(x) = [ ~(x)]-'.~(x) 
where x E M, ~ E Qw. Here we have taken advantage  of  the produc t  in P 3. 
This now gives rise to a loop X 0 in Q0, where X0 = r ok%. The "adjoint"  ~ of 
)'0 is defined by 

ep(x,t) =x0(t)(x) 
and it is easy to check that q~ is a well-defined map q3: EM--+p 3. Before 
passing to our main  theorems we give an explicit example which may  help 
to illustrate this process. 

Example. Take  M = P 3 ,  cp=idp3. Denote  points of p3 by x =  
col[x 1, x 2, x 3, x4] = col[ - Xl, - x2, - x3, - x4] , x 2 + x 2 + x 2 + x4 2 = 1, and  write 
0 = 2rrt. After  some calculations, one finds 

~(x't)= I 

~ ( t ) ( x )  = 

xl cos 0 + x 2 sin 0 - 

- x I s i n 0 +  X2COS0 

X 3 

X 4 

(x2x 4 -  xlx3) sin0 - (xlx4 + x2x3)(1 - cos0)  

- (XaX 4 + x2x3) sin0 + (XlX 3 -  XzX4)(1 - cos0)  

(x  2 + x22) sine 

x 2 + x~ + ( x ,  ~ + x~) cos  e 
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Note that ~(x, 0) = r 1) = qS(I, t) = I, where I = col[0, 0, 0, 1] is the base 
point of p3, and hence q~ is indeed a map on ~p3 .  

Theorem 5.2. [EM, Pa].~Z2~ Ht(M). 

Proof. Write Y=EM. Since Y is simply connected, it follows (Hu, 
1959, p. 97) that 

[Y, P3]~,[y, s3] 

Using the fiber mapping sequence applied to the two-stage Postnikov 
system of Section 4, we obtain an exact sequence: 

H2(y)Sq2--~n4(y;z2) i*~[y, x4]~--~* H3(y ) 

?? s 2 ?? ?? 
HI(M)aq-~H3(M;Z2)~_.Z2p. ~ H2(M) 

[Y,S 31 Hi(M) 

�9 # 5 ( y ; z  9 

0 

(Poincar6 duality) 

The left-hand square commutes since Sq 2 commutes with suspension. 
However, Sq i vanishes on any class of dimension less than i, hence Sq z = 0 
in the diagram and i .  is monic, cr. epic. It remains to prove that the 
resulting short exact sequence splits. 

To do this, let u generate H4(y;Zz)~Zz, and set i.(u)=p.[u'] for 
some u': Y-->S 3. We must simply show [u']=~2[v] for any [v]~[Y,S 3] in 
order to establish the splitting. Denoting stable homotopy classes by ( ,  }, 
we have [y,  s3 ]~{  Y,S 3} (Spanier, 1966, p. 458) and therefore techniques 
of stable homotopy theory are applicable. Consider the cofibration 
sequence 

S 3 _.~ S 3 Jr~ p;__).S4.....~... 

where u is a degree-2 map (note Pff is defined as p./pi,-l).  This gives rise 
to an exact sequence 

( r , s  3) ( r , s  % ( r ,  �9 �9 

with u .  being multiplication by 2. Thus [u']=/=2[v] if and only ifj.[u']=/=0. 
Next consider u as a map u: Y~K(Z2,4), which factors by cellular 

approximation into Y-~ S4~K(Z2,4). Taking v as the (suspended) Hopf 
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map $4----~S 3, the triangle below is homotopy commutative: 

Y ~ . ~ K (  Z 2, 4) ~ 

U 

Then p,[vo~]+[pl, o~]=[iu]= i,[u]=p,[u'] gives go~_u', again since p, is an 
isomorphism. 

Letting j r  =f ,  one verifies Cy= P35, where Cy denotes the mapping cone 
of f. There is then a commutative diagram of cofibration sequences: 

f~ 
r e . 

S 4 _ _  p 4  c , p C  S 5 

A functional operation Sq~ is then defined on ~3 ~ H 3 ( p 4 ;  Z2), and one 
finds from the known action of Sq 2 in P35 that 

2 3~ 
S q f ( ~ 3 )  ---- ~ ~s ~--3/-t4 = ~4 

where/x 4 generates H4($4; Z2) , modulo zero indeterminacy. By naturality 
Sq~(~3)---o~*(u4) = u=~0, again mod 0. Hence f~  is nontrivial. But fro =jpo~ 
"~ju', so j . [u ' ]  = [ju'] v~O, as was required to be proved. 

Corollary 5.3. [~P3,p3].~ Z2 ~) HI( P3)= Z2~) Z 2. 

Lemma 5.4. [~e~]=(X,~)~[Y.P3,P3], where ~ is the generator of 
HI (P  3) and X~ Z 2 is undetermined. 

Proof Zx: S4-->Y.P 3, so 

(~Is ~: [ "~:]P3, P3 ]---9, [ s 4 , e  3 ] 

and clearly (Ex)#[i"d]=[#]. As mentioned above in the remark following 
Definition 5.1, ~ or equivalently its adjoint # has been studied by Williams 
and Zvengrowski (1977), and it was shown there that [~] is the nonzero 
element of [S 4, p 3] ~ ~r4( P 3)~ Z2" The cofibration sequence 

3 • 3 i 4 p 4Y4r 3 S -->P ~-->P -->S --->EP 
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taken together with the usual 2-stage Postnikov system for S 3 now gives a 
commutative diagram: 

H2(p4)-~H4(p4; Z2) . [p4, s3]~H3(p4)~O 

lp" lo ~ 
a 4(S 4; Z 2 ) ~ . - [  S 4, S 3] 

z2~ n4(~p3; Z2)N----~[Y, p3,s3]~ H3(~P 3) 
tt It 

Z2~ Z ~ HI(P3),~Z2 

The top row shows [P4 ,$3]=0 ,  hence (Y~x)# is epic. Now x has degree 2, 
hence (Zx)* = 0. It follows that (Zx) # must be nonzero on (0 ,~ )~  Z 2 ~  Z 2 
and is zero on (1,0). But we have remarked that (~x)#[id]=[~]4=0, so 
[id]=(0,~) or (1,~) are the only possibilities. 

Theorem 5.5. If q0: M----~P 3 is a map of kink number • 1 and kink 
type (4- 1; 0, 0 , . . . ,  0) in case M is of type 2, then [qS] is nonzero of 
order 2 in [Y~M, p3]. 

Proof First suppose M has type 2, in which case the 1-kink map 

~p:M--->P 3 is a composition M g s 3 - ~ p  3, where deg g = l .  Let t=ids3. 
NOW ~[~83,53]~7r4(S3)~Z2 was shown (Williams and Zvengrowski, 
1977) to be the nonzero element, and it is clear from the definitions of 2~r 
rotations that g*(X,)=Xg or equivalently (Zg)e[q = [g]. Consider the com- 
mutative diagram (cf. first exact sequence in proof of Theorem 5.2): 

Z2~'~ H4(• M; Z2) i. [•M, S 3] 

Z2~H4(S4; Z2) ~ [S 4, S 3] 

Then [~] = (Zg)#[~ = i.g*(u4), where u 4 generates H4($4; Z2). But d eg g =  
1, so g* is an isomorphism and hence [~] has order 2. Applying the 
isomorphism K~:[ZM, S3]-->[Y.M, p3], it follows that [q?] also has order 2. 
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Now suppose M is of type 1, in which case degqg= 1. Consider 

19 

Z 2,~ H 4(~, M; Z2) 

I (:~cp)* 

Z2~, H4(~,P3; Z2) > 

[YM, S 31 H2(M) 

[EP3, S 3] , ,  H2(p  3) 

Z2 fi) Z2 H1 (p  3) ~ Z2 

Here [q?] = (Y.(p)e[ide3 ] = (Y.q0)e(X, f)  by Lemma 5.4. 
Now degep-- 1 implies (Ecp)* is an isomorphism and rp* monic. Hence 

[r~]=(X,~p*~2), where 42 generates HE(p3)~Z2, and this class is of order 2 
since cp* is monic. �9 

Remark. Note that [~], although always of order 2, has a somewhat 
different form in the type 1 and type 2 cases. 

Remark. Exactly the same proof works for maps of odd kink number. 

Remark. Suppose we were interested in a Skyrme-type theory where 
we were mapping into S 3, and where the domain was any closed, con- 
nected, orientable 3-manifold M. The fact that [M, S a ] ~ Z  (Proposition 
4.1) means that such a theory admits kinks, and the kink number is equal 
to the degree. It is also easy to show (following the first half of the proof of 
Theorem 5.5) that the homotopy classes Q~@[M,S 3] admit half-odd- 
integer spin if and only if n is odd. 

6. EXAMPLES 

Table I lists some orientable 3-manifolds of interest in relativity 
theory (Fisher, 1970, p. 334). The symbol # denotes the connected sum of 
two closed, orientable 3-manifolds, M l and ME, formed by removing two 
open 3-balls from M 1 and ME, respectively, and identifying the resulting 
2-sphere boundaries by an orientation-reversing homeomorphism. S(p) 
denotes the 3-sphere with p handles, 

S(p) ~. S3:~(S 1 x 52)1-~ . . .  * ( S I x  S2)p 

We write L(p, q) for the lens space of type (p, q). For any group G C SO(3) 
=P3,Cr=~-I(G)cS3 denotes the "double cover" of G. By D~ we mean 
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TABLE I. Kink Classification for Some choices of M a 

M ~q(M) HI(M ) Type Kinks= [M, P s ] 

S 3 0 0 2 Z 
p3 Z 2 Z 2 1 Z 

S I x S  2 Z Z 2 Z ~ ) Z  2 
S i X S I x S  l Z 3 Z s 2 Z ~ ) Z ~  

S(p) ~ z~ 2 z ~ z ~  

lp=-- l(mod 2) Zp Zp 2 Z 
L(p ,q )Jp=2(mod  4) Zp Zp '1 Z 

[p--= 0(mod 4) Zp Zp 2 Z ~ Z  2 

~._-- l(mod 2) ~. Z~ 2 Z * Z :  
S ' / D n J  n----2(mod 4) /ff~ Z]  2 Z ~ Z ]  

I n ~ O(mod 4) lfin Z ]  1 Z ~ Z 2 

s 3 / ~  T z3 2 z 
$ 3 / 0  0 Z 2 1 Z 

$3/[ [ 0 2 Z 

aG~' denotes G ~ - - -  �9 G (p times) for an Abelian group G, and Fp denotes 
the free group on p symbols. 

the dihedral group of order 2n, and T, 0 , I  denote the tetrahedral, oc- 
tahedral, and icosahedral groups of orders 12, 24, and 60, respectively. 

The classification into type 1 or type 2 manifolds is based on Theorem 
4.4 (iv) or on Corollary 4.5 in the simpler cases. The necessary cohomologi- 
cal calculations for manifolds of the form S3/rr, where ~r is a group acting 
freely on S 3 (e.g., G-above), are related to the cohomology of the group ~r 
by Lemma 6.1 below, but further details of these calculations are omitted. 
The methods of Cartan and Eilenberg (1956, Chap. 12) can be used, or see 
also Shastri and Zvengrowski (1979). 

Lemrna 6.1. Let 7r be a group acting freely on S n, A a ring of 
coefficients with trivial ~r action, and M=S"/~r .  Suppose ~ 
H l('/r; A) and ~ n :/: 0. Then there is an element ~/E H I(M; A) such 
that */n :/: 0. 

Proof M can be taken as the n-skelton of a K(Tr, 1). Thus X = K(~r, 1) 
= M t . 3 e n + l u e ~ + E u . . . .  Let i:M~->X be the inclusion. For  any 
coefficients, i* is an isomorphism in dimensions less than n and a mono- 
morphism in dimension n. Since H*Or;A)=H*(X;A) (by definition), 
taking , /=  i*(0 clearly suffices. 

Corollary 6.2. With n = 3  above and A =  Z 2, M is then of type 1 
(cf. Theorem 4.4). 
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Corollary 6.3. If ~r=  Z 2 X H for some group H and n =3,  then M is 
of type 1. 

Proof K(~r, l) = P oo X K(H, 1), so taking ~ = q | l with Z 2 coefficients 
gives the result. �9 

Only irreducible manifolds (except for S(p)) have been considered in 
Table I, that is manifolds that cannot be expressed nontrivially as a 
connected sum. Note that a connected sum of 3-manifolds, M~ # - - ,  # Mr 
will be of type 1 if any M e is of type 1, and will be of type 2 only if all M~ 
are of type 2 (Shastri and Zvengrowski, 1979). It is easy to compute 
[MI:#:M2,P 3] given that [M1,p3],~Z(DZf 
and q known. There are three cases: 
(a) M1,M 2 both type 2~[MI:#: M2,P3]~,~,Z 
(b) mixed types ~[MI~M2,Pa],~Z 
(c) M1,M 2 both type I ~[MI CC M2,P3]~Z 

and [M2,P3]~-~Z~Z~, with p 

~ Z ~  +q 
~ Z ~  +q 

7 P  + q + l  
~ 2  

Note that an infinite family of irreducible 3-manifolds, all of type 1 and 
having the same homology as p3, is furnished by the thesis of L6pez de 
Medrano (1971, p. 25). We remark that the classification scheme for S(p), 
namely, Z(gZ~, has already been anticipated by Finkelstein (1978), and 
some work has been done on the one-handle case (Finkelstein and Misner, 
1962). 

It was previously pointed out that the metric 

provides an example of a l-kink metric for M =  S 3. Constructing such 
examples for more complicated M becomes rather involved and we shall 
be content with examining the M = S I X S  2 case. Here the homotopy 
classes of metrics are labeled by a pair (n; t) ~ Z ~ Z  2. Let us denote points 
of S 2 by ~ = (/z 1,/*2,/*3), where Y./,/2 = 1, and let/3 be an angular variable, 
0 < fl < 2~r with 0 and 2~r identified. The pair (fl,/~) then represents a point 
in S l •  S 2. As base point we take f l=0, /~=(0,0 ,  1). Points (qq,q~2,d~3,q~4)= 
(q~,~4)~S 3 can be conveniently represented by a 2 x 2  unitary matrix 
U=I4,4+ ir.q~, where I is the unit matrix and {ri) are the Pauli matrices 

0) 0) 
[U] is then a point of p3, and Table II lists various unitary matrices 
representing maps S 1 x  S2---~P 3. By identifying p 3 =  M4,1 as the subspace 
$4, i n  0(4) of $4,1 (Steenrod, 1951, w and choosing an explicit framing 
for S~X S 2, any of the maps in Table II can be reinterpreted as a Lorentz 
metric for the case M =  S l x S 2. 
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TABLE II. Maps for the Metric for M= S 1 • S 2 

(n;t) [ U]=[I~4 + i~.~] 

(0,0) [u0,0]=[I] 
(0, 1) [Uo.l]=[Icos�89 ir189 fll 
(0 ,2)  [Uo,2lm[Uo, lUo, ll=[Icosfl+ir 
(1, 1) [U1, d=[lcos�89 ir sin�89 
(1,0) [UI,o]=[UI.IUo, I] 
(2,2) [ U2,2]m[ UI, I UI,1] 

7. PHYSIC AL I N T E R P R E T A T I O N  AND C O N C L U S I O N S  

For  a parallelizable space-time manifold 6"~4 that is a bundle space 
with no closed time lines and with any closed, connected, orientable 
3-manifold M as base, the procedure for determining all possible homo- 
topy classes of metrics has been specified. This is equivalent to calculating 
[ M , P  3] for all M, which was shown to have a particularly Simple form, 
namely, [M, p 3 ] ~ Z ~ ) Z  l. The value of l, the number  of copies of Z 2, 
depends partly on whether degree-1 maps M---~P 3 are possible (in which 
case M is called type 1) or not (in which case M is called type 2, and all 
maps are of even degree). The homotopy  class of a metric can be labeled 
by (n ; t  1 . . . . .  t I ) ~ Z ~ Z ~ ,  where ti=O or 1 (or _1) ,  i=1 ,2  . . . . .  l. The kink 
number  n E Z is clearly the important  label and counts the number  of 
"particles" or "structures" present. It  is possible that the latter will find 
applications in astrophysics and black hole theory (Finkelstein and 
McCollum, 1975; Finkelstein, 1978); yet the fermionlike properties of the 
kinks suggest possible applications in elementary particle physics, too. It  
was shown that half-odd-integer spin occurs if n is odd. The fact 
that there is a unique counting number  n E Z and fermion behavior  
for all possible choices of M is very striking, and it would seem odd if 
Nature  should not make use of this somehow. 
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